-16t^2+62t+29=0

Simple and best practice solution for -16t^2+62t+29=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+62t+29=0 equation:



-16t^2+62t+29=0
a = -16; b = 62; c = +29;
Δ = b2-4ac
Δ = 622-4·(-16)·29
Δ = 5700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5700}=\sqrt{100*57}=\sqrt{100}*\sqrt{57}=10\sqrt{57}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-10\sqrt{57}}{2*-16}=\frac{-62-10\sqrt{57}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+10\sqrt{57}}{2*-16}=\frac{-62+10\sqrt{57}}{-32} $

See similar equations:

| -5.4z=59.4 | | 2x3x=600 | | v-17=26 | | -20=n/5 | | -5x-2(-7-4x)=(3x-2) | | 84+17+6d=-19 | | 4(x+2)=7x+6-3x+2 | | 3(x+5)+x=5 | | H(t)=13.7t+.5-4.9t^2 | | 40+5x=2x+70 | | 18x-(-)=95 | | -2x+-6+5x=-39 | | (20x+5)=15x | | (20x-5)=15x | | -1=-2/9x | | T=13.7t+0.5-4.9t^2 | | d-21=4 | | -18=-3+n | | 3x=6(1+5x)-6 | | x*2-12x+35=0 | | 5/2=20/y | | 3*y+5=23y= | | 8=13+(x/2) | | |2x+5|=19 | | 8+4x-6x=10x+12 | | 8.4x=168 | | -81+b=19 | | 7(1-7b)+8(5b=3)=-9b+2 | | 3+3v=4(v-1) | | 125x=75x+50 | | -11=-61-6y | | 7b+21=2b-49 |

Equations solver categories